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In a broad range of mathematical problems, the 
existence of solution is equivalent to existence of 
a fixed point for a suitable transformation. The 
existence of fixed-point theory is therefore having 
a tremendous importance and beauty in several 
areas of mathematics and other sciences. It is 
possible that a problem does not have any of the 
solution but the fixed-point theory itself provides 
the condition under which a transformation has 
solutions. This is the theory which is embellished 
mixture of pure and applied analysis, topology and 
geometry.  
It is fruitful and promising area of research for 
mathematicians during the last several decades. 
Over since last 70 years, fixed point theory has 
been revealed itself as a very powerful and 
important tool in the study of non-linear 
phenomena. In particular, fixed-point techniques 
have been applied in diverse fields such as in 
biology, chemistry, economics, engineering, game 
theory and physics. The point at which the curve y 
= f (x) and the line y = x intersects gives the 
solution of the curve, and the point of intersection 
is the fixed point of the curve. The usefulness of 
the concrete applications has increased 
enormously due to the development of accurate 
techniques for computing fixed points. 
Fixed points are the points which remain invariant 
under a map/transformation. Fixed points tell us 
which parts of the space are pinned in plane, not 
moved, by the transformation. The fixed points of 
a transformation restrict the motion of the space 
under some restrictions. 
We note that fixed point problems and root 
finding problems f(x) = 0 are equivalent.  
Now, the question arise what type of problems 
have the fixed point. The fixed point problems can 
be elaborated in the following manner: 

(i) What functions/maps have a fixed 
point? 

(ii) How do we determine the fixed 
point? 
 

 
(iii) Is the fixed point unique? 

Next, we state a result which gives us the guarantee 
of existence of fixed points. 
Suppose g is continuous self map on [a, b]. Then, 
we have the following conclusions: 

(i) If the range of the mapping y = g(x) 

satisfies y ∈ [a, b] for all x ∈ [a, b], 
then g has a fixed point in [a, b]. 

(ii) Suppose that g΄(x) is defined over (a, 
b) and that a positive constant k < 1 

exists with |g΄(x)| ≤ k for all x ∈ (a, 
b), then g has a unique fixed point in 
[a, b]. 

Now, suppose that (X, d) be a complete metric 
space and T : X → X be a map. The mapping T 

satisfies a Lipchitz condition with constant 𝛼 ≥ 0 

such that d (Tx, Ty) ≤ 𝛼 d(x, y), for all x, y in X. 

For different values of  𝛼, we have the following 
cases:  

  (a)      T is called a contraction mapping if 𝛼< 1;  

  (b)       T is called non-expansive if 𝛼 ≤ 1; 

   (c)       T is called contractive if 𝛼 = 1. 

It is clear that contraction ⇒ contractive ⇒ non-

expansive⇒ Lipschitz. However, converse may 
not true in either case as: 

(i) The identity map I : X  X, where X 
is a metric space, is non-expansive 
but not contractive. 

(ii) Let X = [0, ∞) be a complete metric 
space equipped with the metric of 
absolute value. Define, f : X →X 
given by f(x) = x + 1/x. Then f is 
contractive map, while f is not a 
contraction.   

Multiplicative metric space 
In 1991, Muttalip Ozavsar and Adem Cevikal 
discussed multiplicative mappings by giving some 
topological properties of the relevant 
multiplicative metric space. It was observed that 
the set of positive real numbers is a complete 
multiplicative metric space with respect to the 
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multiplicative absolute value function. Also some 
concepts of multiplicative contraction mapping 
had used and some fixed point theorems were 
proved of such mappings on a complete 
multiplicative metric space. Muttalip Ozavsar and 
Adem Cevikal states 
“Let X be a non-empty set. Suppose that the 
mapping 

d : X × X → ℝ+ satisfying the following 
conditions:       

  (M1)      d(x, y) ≥ 1 for all x, y ∈ X and d(x, 
y) = 1 iff x = y,                                                

(M2)      d(x, y) = d(y, x) for all x, y ∈ X,                                                                                       
  (M3)      d(x, z) ≤ d(x, y)·d(y, z) for all x, y, z 

∈ X (multiplicative triangle inequality).                     
Definition 1.4 Let (X, d) be a multiplicative metric 

space, x ∈ X and ε > 1. We define a  

set Bε(x) = {y ∈ X | d(x, y) < ε},which is called 
multiplicative open ball of radius ε with centre 
x. 
Similarly, one can describe multiplicative closed 

ball as Bε(x) = {y ∈ X | d(x, y) ≤ ε} .” 
Definition 1.5 Let (X, d) be a multiplicative metric 

space and A⊂ X. Then we call x ∈ A a 
multiplicative interior point of A if there exists an 

ε > 1 such that Bε(x) ⊂ A. The collection of all 
interior points of A is called multiplicative 
interior of A and denoted by int (A).”           
Definition 1.6 “Let (X, d) be a multiplicative 

metric space and A⊂ X. If every point of A is a 
multiplicative interior point of A, i.e., A = int (A), 
then A is called a multiplicative open set.” 
Lemma 1.7 “Let (X, d) be a multiplicative metric 
space. Each multiplicative open ball of X is a 
multiplicative open set.     

Proof. Let x ∈ X and Bε (x) be a multiplicative 

open ball. For y ∈Bε (x), if we let δ = 
ε

d(x,y)
 and   

z ∈ Bδ(y), then d(y, z) <
ε

d(x,y)
, from which we 

conclude that                                                                                                                                                                 
d(x, z) < d(x, y) · d(y, z) < ε.                                                                                                        

 This shows that z ∈Bε(x), which means that Bδ(y) 

⊂ Bε (x)  i.e., y is interior point of  Bε (x).   
Thus Bε (x) is multiplicative open set.”  
Lemma 1.8 “The intersection of any finite family 
of multiplicative open sets is also a multiplicative 
open set. 
Proof. Let B1 and B2 be two multiplicative open 

sets and y ∈ B1∩B2. Then there are δ1, δ2 > 1 such 

that Bδ1 (y) ⊂ B1 and Bδ2 (y) ⊂ B2. Letting δ be the 

smaller of δ1 and δ2, we conclude that Bδ(y) ⊂ B1 

∩ B2. Hence the intersection of any finite family of 
multiplicative open sets is a multiplicative open 
set.”  
Definition 1.9 “Let (X, d) be a multiplicative 

metric space. A point x ∈ X is said to be 

multiplicative limit point of S ⊂ X if and only 

if (Bε(x) - {x}) ∩ S ≠ ϕ for every ε > 1. The set 
of all multiplicative limit points of the set S is 
denoted by S′.”                                                                       
Definition 1.10 “Let (X, d) be a multiplicative 

metric space. We call a set S ⊂ X multiplicative 
closed in (X, d) if S contains all of its 
multiplicative limit points.” 
Definition 1.11 “Let (X, d) be a multiplicative 

metric space, {xn} be a sequence in X and     x ∈ 
X. If for every multiplicative open ball Bε(x), there 

exists a natural number N such that         n ≥ N ⇒ 

xn ∈ Bε(x), then the sequence {xn} is said to be 
multiplicative convergent to x, denoted by xn → 
x (n → ∞).”  
Lemma 1.12 “Let (X, d) be a multiplicative metric 

space,{x n} be a sequence in X and x ∈ X. Then x 

n → x  (n → ∞) if and only if d (x n, x) → 1 (n → 
∞).  

Proof. Suppose that the sequence {x n} is 
multiplicative convergent to x. i.e., for every ε > 1, 
there is a natural number N such that d(xn, x) < ε 
whenever n ≥ N. Thus we have the following 
inequality  1/ ε < d (xn, x) < 1·ε  for all n ≥ N.  

This means |d(xn, x)| < ε for all n ≥ N, 
which implies that the sequence d(xn, x) is 
multiplicative convergent to 1.  It is clear to verify 
the converse.” 
Lemma 1.13 “Let (X, d) be a multiplicative 

metric space, {x n} be a sequence in X. If the 

sequence {xn} is multiplicative convergent, then 
the multiplicative limit point is unique.                        

Proof. Let x, y ∈ X such that xn → x and xn → y 
(n → ∞). That is, for every ε > 1, there exists N 
such that, for all n ≥ N, we have d(xn, x) < √ ε and 
d(xn, y) < √ ε. Then, we have                        
d(x, y) ≤ d(xn, x) · d(xn, y) < ε. Since ε is arbitrary, 
d(x, y) = 1. This says x = y.” 
Theorem 1.14 “Let (X, dX) and (Y, dY ) be two 
multiplicative metric spaces, f : X → Y be a 

mapping and {x n} be any sequence in X. Then f is 
multiplicative continuous at the point       

 x ∈ X iff f(xn) → f(x) for every sequence {x n} 
with xn → x (n → ∞).  
Proof. Suppose that f is multiplicative continuous 
at the point x and xn → x. From the multiplicative 
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continuity of f, we have that, for every ε > 1, there 
exists δ > 1 such that                

  f (Bδ(x)) ⊂ Bε (f(x)). Since xn → x (n → ∞), there 

exists N such that n ≥ N implies xn∈ Bδ(x). By 

virtue of the above inclusion, then f(xn) ∈ Bε(f(x)) 
and hence f(xn) → f(x) (n → ∞). 
Conversely, assume that f is not multiplicative 
continuous at x. That is, there exists an ε > 1 such 

that, for each δ > 1, we have x ′ ∈ X with dX(x ′, x) 
< δ but 
(1.2)    dY (f(x′), f(x)) ≥ ε   
Now, take any sequence of real numbers (δn) such 
that δn → 1 and δn > 1 for each n. For each n, 
select x′ that satisfies the equation (1.2) and call this 
x n′ . It is clear that x n′ → x, but f(x n′) is not 
multiplicative convergent to f(x). Hence we see 
that if f is not multiplicative continuous, then not 

every sequence {x n} with xn → x will yield a 
sequence f(xn) → f(x). Taking the contrapositive 
of this statement demonstrates that the condition 
is sufficient.”                                                     
Similarly, we can prove the following theorems. 
Theorem 1.15 “Let (X, d) be a multiplicative 

metric space and {x n} be a sequence in X. The 
sequence is multiplicative convergent, then it is a 
multiplicative cauchy sequence.  

Proof. Let x ∈ X such that xn → x. Hence we 
have that for any ε > 1, there exist a natural 
number N such that d(xn, x) < √ ε and d(xm, x) < 
√ ε for all m, n ≥ N.                                                
By the multiplicative triangle inequality, we get                                                                         
  d(xn, xm) ≤ d(xn, x) · d(x, xm) < √ ε · √ ε = ε,                                                                             

which implies {x n} is a multiplicative cauchy 
sequence.” 
Theorem 1.16 “(Multiplicative characterization 
of supremum) Let A be a non-empty subset of 

ℝ+. Then s = sup A if and only if                                                                                                          

   (i) a ≤ s for all a ∈ 
A                                                                                                                             

(ii) there exists at least a point a ∈ A such that  | 
s / a | < ε for all ε > 1.  
Proof. Let s = sup A. Then from the definition of 
supremum, the condition (i) is trivial. To prove the 
condition (i), assume that there is an ε >1 such that 

there are no elements a ∈ A such that |s / a| < ε. 
If this is the case, then s / ε is also an upper bound 
for the set A. But this is impossible, since s is the 
smallest upper bound for A.  
To prove the converse, assume that the number s 
satisfies the conditions (i) and (ii).  

By the condition (i), s is an upper bound for the 
set A. If s ≠ sup A, then s > sup A and ε = s / sup 
A > 1.  
By the condition (ii), there exists at least a number 

a ∈ A such that | s / a |  < ε. By the definition of 
the number ε, this means that a > sup A. This is 
impossible, hence s = sup A.”  
Theorem 1.17] “Let {xn} and {yn} be 
multiplicative cauchy sequences in a multiplicative 
metric space (X,d). The sequence {d(xn,yn)} is also 
a multiplicative cauchy sequence in the 

multiplicative metric space (ℝ+,d∗). 
Lemma 1.12 “Let (X, d) be a multiplicative metric 

space,{x n} be a sequence in X and x ∈ X. Then x 

n → x  (n → ∞) if and only if d (x n, x) → 1 (n → 
∞).  

Proof. Suppose that the sequence {x n} is 
multiplicative convergent to x. i.e., for every ε > 1, 
there is a natural number N such that d(xn, x) < ε 
whenever n ≥ N. Thus we have the following 
inequality  1/ ε < d (xn, x) < 1·ε  for all n ≥ N.  

This means |d(xn, x)| < ε for all n ≥ N, 
which implies that the sequence d(xn, x) is 
multiplicative convergent to 1.  It is clear to verify 
the converse.” 
Lemma 1.13 “Let (X, d) be a multiplicative 

metric space, {x n} be a sequence in X. If the 

sequence {xn} is multiplicative convergent, then 
the multiplicative limit point is unique.                        

Proof. Let x, y ∈ X such that xn → x and xn → y 
(n → ∞). That is, for every ε > 1, there exists N 
such that, for all n ≥ N, we have d(xn, x) < √ ε and 
d(xn, y) < √ ε. Then, we have                       
 d(x, y) ≤ d(xn, x) · d(xn, y) < ε. Since ε is arbitrary, 
d(x, y) = 1. This says x = y.” 
Theorem 1.14 “Let (X, dX) and (Y, dY ) be two 
multiplicative metric spaces, f : X → Y be a 

mapping and {x n} be any sequence in X. Then f is 

multiplicative continuous at the point       x ∈ X iff 

f(xn) → f(x) for every sequence {x n} with xn → x 
(n → ∞).  
Proof. Suppose that f is multiplicative continuous 
at the point x and xn → x. From the multiplicative 
continuity of f, we have that, for every ε > 1, there 
exists δ > 1 such that                 

 f (Bδ(x)) ⊂ Bε (f(x)). Since xn → x (n → ∞), there 

exists N such that n ≥ N implies xn∈ Bδ(x). By 

virtue of the above inclusion, then f(xn) ∈ Bε(f(x)) 
and hence f(xn) → f(x) (n → ∞). 
Conversely, assume that f is not multiplicative 
continuous at x. That is, there exists an ε > 1 such 
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that, for each δ > 1, we have x ′ ∈ X with dX(x ′, x) 
< δ but 
(1.2)    dY (f(x′), f(x)) ≥ ε   
Now, take any sequence of real numbers (δn) such 
that δn → 1 and δn > 1 for each n. For each n, 
select x′ that satisfies the equation (1.2) and call this 
x n′ . It is clear that x n′ → x, but f(x n′) is not 
multiplicative convergent to f(x). Hence we see 
that if f is not multiplicative continuous, then not 

every sequence {x n} with xn → x will yield a 
sequence f(xn) → f(x). Taking the contrapositive 
of this statement demonstrates that the condition 
is sufficient.”                                                     
Similarly, we can prove the following theorems. 
Theorem 1.15 “Let (X, d) be a multiplicative 

metric space and {x n} be a sequence in X. The 
sequence is multiplicative convergent, then it is a 
multiplicative cauchy sequence.  

Proof. Let x ∈ X such that xn → x. Hence we 
have that for any ε > 1, there exist a natural 
number N such that d(xn, x) < √ ε and d(xm, x) < 
√ ε for all m, n ≥ N.                                                
By the multiplicative triangle inequality, we get                                                                           
d(xn, xm) ≤ d(xn, x) · d(x, xm) < √ ε · √ ε = ε,                                                                            

 which implies {x n} is a multiplicative cauchy 
sequence.” 
Theorem 1.16 “(Multiplicative characterization 
of supremum) Let A be a non-empty subset of 

ℝ+. Then s = sup A if and only if                                                                                                            

(i) a ≤ s for all a ∈ A                                                                                                                             

(ii)  (ii) there exists at least a point a ∈ A 
such that  | s / a | < ε for all ε > 1.  

Proof. Let s = sup A. Then from the definition of 
supremum, the condition (i) is trivial. To prove the 
condition (i), assume that there is an ε >1 such that 

there are no elements a ∈ A such that |s / a| < ε. 
If this is the case, then s / ε is also an upper bound 
for the set A. But this is impossible, since s is the 
smallest upper bound for A.  
To prove the converse, assume that the number s 
satisfies the conditions (i) and (ii).  
By the condition (i), s is an upper bound for the 
set A. If s ≠ sup A, then s > sup A and ε = s / sup 
A > 1.  
By the condition (ii), there exists at least a number 

a ∈ A such that | s / a |  < ε. By the definition of 
the number ε, this means that a > sup A. This is 
impossible, hence s = sup A.”  
Theorem 1.17 “Let {xn} and {yn} be 
multiplicative cauchy sequences in a multiplicative 
metric space (X,d). The sequence {d(xn,yn)} is also 

a multiplicative cauchy sequence in the 

multiplicative metric space (ℝ+,d∗). 
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